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Abstract. It is shown that an extra defect line introduced into a solid-on-solid model to 
describe a second-order wetting transition in two dimensions may lead to a sharp first-order 
depinning. If disorder is introduced along the defect line, this first-order transition may 
be driven to second order. If the transition in the pure system is second order, disorder 
may drive it to first order. All the calculations leading to the above results can be performed 
analytically. 

The effect of disorder on a second-order phase transition can be accessed using the 
Harris criterion (Harris 1974). Imry and Wortis generalised Harris’ argument with the 
following result: under appropriate conditions disorder may turn a first-order transition 
to second order (Imry and Wortis 1979). The validity of this conclusion has since 
been demonstrated experimentally (Ryan et a1 1986). The aim of this publication is 
to present for the first time an analytic calculation supporting the result of Imry and 
Wortis. 

We consider wetting phenomena in two dimensions ( 2 ~ ) .  It has been shown 
(Forgacs et a1 1988b) that the introduction of an additional defect line of bonds (see 
below) in Abraham’s model (Abraham 1980) for continuous wetting transition can 
lead to a sharp first-order unbinding transition. The importance of this result stems 
from the earlier belief that discontinuous unbinding can take place only in the presence 
of long-range interactions. No such interactions are present in the model studied by 
Forgacs et al (1988b), which uses the language of Ising spins. 

As a separate recent development, the effect of disorder introduced on the wall or 
substrate (from which unbinding takes place) has been studied using mean-field 
considerations (Forgacs er a1 1985), Monte Carlo calculations (Speth 1986) and 
real-space renormalisation (Svrakic 1985). Another approach is via the restricted 
solid-on-solid (RSOS) model (Forgacs et al 1986,1988a). It was demonstrated that, 
provided the transition in the pure system is of second order, substrate randomness is 
not a relevant perturbation. It introduces ‘only’ logarithmic corrections to the pure 
system’s free energy, but the critical exponents are unaffected. Moreover, the condition 
of criticality of the quenched random system is exactly the same as that of the annealed 
random system (Forgacs et a1 1986,1988b). These results should be contrasted with 
those for bulk randomness. If bulk randomness is uncorrelated (Kardar 1985, Lipowsky 
and Fisher 1986), the critical exponents are changed with respect to the pure system. 
If bulk randomness is fully correlated in the direction of the wall the transition becomes 
first order, despite the absence of long-range forces (Nieuwenhuizen 1988). 
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In the present work, by combining the above results we are able to prove that 
substrate-like disorder indeed may turn a first-order unbinding transition to second 
order. For this purpose, we first reproduce the results on the first-order unbinding 
(Forgacs er al 1988a), mentioned above, in terms of the RSOS model. These results 
will be needed when disorder is introduced. 

Consider the ZD RSOS model 

The difference of nearest-neighbour height variables h, ( h ,  assume integer values 
between 0 and CO) may be only 0, i l .  J, U and U are positive. If U = 0 (model A), (1) 
describes a continuous wetting transition (Chui and Weeks 1981, van Leeuwen and 
Hilhorst 1981). The parameter U models an attractive wall potential at h, = 0 and for 
zero temperature, T = 0, the interface is localised at this substrate. (In the RSOS model 
h, = n means that in the ith column n down-spins are followed by up-spins and the 
interface develops between the regions of up- and down-spins. The model gives an 
accurate description of the low-temperature phase of the Ising model.) This interface 
depins smoothly at a finite temperature T,, where ( h , )  = CO (( ) denotes the thermody- 
namic average). 

For U = 0, U # 0 at T = 0 the interface is localised at a defect line at a distance L 
from the wall. The mechanism of depinning is the same as in model A. If L +  CO (after 
N + CO) for finite U, depinning from the line takes place only at infinite temperature. 
We call this ( U  = 0, U # 0, L +  CO) model B. Model B is then equivalent to a symmetric 
model, in which the h, take on integer values between -CO and +CO; the defect line 
with v is placed at h, = 0. Let us now consider the general case U # 0, U # 0. If U > U, 

at T = 0 the interface is still pinned to the substrate. For finite L, at a finite temperature 
(although shifted relative to T,) there is still a second-order wetting transition. In the 
limit L + CO ( L  < N ) ,  however, at some TF < T,  the interface unbinds from the substrate 
via a sharp first-order transition and becomes pinned to the defect line in the bulk 
( L  = CO). In the RSOS model this first-order depinning at TF is followed by a continuous 
wetting transition (in which the interface depins from the bulk defect line) at T = CO. 

In the Ising model this continuous transition occurs at the Onsager critical point 
(Forgacs et a1 1988b, c). 

In order to calculate the partition function corresponding to (1) in the limit L + CO 

we use the transfer matrix method. The spectrum of the transfer matrix consists of a 
continuous part and a pair of discrete eigenvalues. The latter, denoted by A A ,  A B ,  are 
given by the solutions of 

( y + y t  e-& - A ) (  w + 2 w t  e-’ - A )  = 0. (2) 
Here t = exp(-J/ T ) ,  y = exp( U /  T ) ,  w = exp( U /  T )  and p is a function of A itself given 

(3) 
The solutions A A ( y )  and AB(w) of ( 2 )  separately determine the partition functions of 
models A and B (with L + W )  respectively. Note the difference between A A  and A B  is 
due to the factor of two in (2).  The physical origin of this factor is related to the 
possibility of the h, to fluctuate both in the h, < 0 and h, > 0 half-spaces in the symmetric 
model (see above). Loosely speaking, the h ,  in the symmetric model fluctuate in a 
space ‘twice bigger’ than in model A. 

by 
A = 1 + 2 t  cosh p. 
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A A  and A B ,  whenever they exist, are larger than any eigenvalue of the continuous 
spectrum of the transfer matrix. The free energy of the system, given by the largest 
eigenvalue of the transfer matrix is determined then by ( 2 ) .  The first-order transition 
temperature is given by A A  = A B ,  i.e. 

y (  1 + f F  e-*) = w (  1 + 2tF e-+) (4) 
where f F  = exp(-J/ TF). If y > w ( U  > U ) ,  the free energy (per site) is 

( 5 )  
In A A  = ln[y( l+ t e-+)] I In A B  = In[ w( 1 + 2 t  e-+)]  

T S  TF 
T 3 TF. 

-f/T= 

These results are summarised in figure 1. The free energy of our model ( U  # 0, U # 0) 
in the L+cO limit is given by the full curve. I t  has a cusp at fF .  The full curve for 
t < tF  and broken curve for t > t F  represent the free energy of model A. The other 
analytic (broken) curve for t < t F  and full curve for t > t F  represent the free energy of 
model B. When w = 1 ( U  = 0) we have 

Our discussion until now has been aimed at reproducing the results obtained 
previously for the Ising model (Forgacs et a1 1988b) within the framework of the RSOS 

model. We now consider what is the effect of disorder on the first-order depinning 
transition. Only substrate-like disorder will be considered here. It will be shown that 
if U is chosen to be a random independent interaction at each site, the first-order 
transition, discussed above, may be driven to second order in agreement with the 
conclusions of Imry and Wortis (1979). Let us consider a model with the third term 
in (1) replaced by I ; , u , $ ~ , , ~ ,  where U, (for each i )  has a probability distribution 

(7)  P (  U,) = p6 (U, - U*) + (1 - p )  6 (  - v R ) .  

Here uA > 0 and uR < 0 correspond to attractive and repulsive defect potentials, respec- 
tively. When U = 0 (model B, since L+ 00) in the pure system ( p  = 1 in (7)) continuous 

t 
0 0.2 0.4 f ,  0.6 

1 1 1 I I 

> -0.3 h 

Figure 1. Free energies of models A and €3 and of the model defined by (1). For more 
details see text. The curves are drawn for v = 0.9, U = 1.2, J = 1. 
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depinning occurs only at T = CO, w = 1. As was shown by Forgacs et a1 (1986,1988a) 
in the quenched random case ( p  < 1) with U = 0 this condition is replaced by 

= du P ( u )  exp(u/ TD) = 1. (8) 

Here, the depinning temperature TD is finite only if 17 < 0. Equation (8) is also the 
condition of critical depinning in the corresponding annealed system (Forgacs et a1 
1986,1988a). The free energy of the quenched disordered version of model B is 

fe-fw-& - ( S + z ” - )  + ( - j ( p 3 ) .  

T 1+2t  l n ( l / p )  (9) 

Here fw is the free energy of the unbound system and is given by - f w /  T = In( 1 + 2t). 
S in (9) is a non-universal constant which depends on the form of P ( u ) .  The above 
equation is valid for small p, in the vicinity of TD, for T=S TD. The actual calculation 
of fB can be summarised as follows. (For details see Forgacs et a1 (1986,1988a) where 
the random versions of model A and of the symmetric model are solved explicitly.) 
To treat randomness one uses the replica trick. This leads to an effective many-body 
Hamiltonian with n-body interactions ( n  = 2,3, . . .). The coupling constant of the 
n-body interaction is proportional to the nth cumulant of (7). The effect of the 
many-body interactions is calculated in perturbation theory. It turns out that interac- 
tions with n > 2 are all irrelevant and do not contribute to the singular part of the free 
energy. All terms of the perturbation series with n = 2, on the other hand, can be 
summed up exactly (in the vicinity of the continuous wetting transition), leading to 
the logarithmic term in (9). (The validity of the replica trick has been checked 
numerically.) 

Starting with a pure system p = 1, U # 0, U # 0 (in the L + cc limit) and then decreas- 
ing p in (7) we expect the first-order depinning transition of the pure system to disappear 
at a given value of p .  This will happen when TD coincides with T,, since in this case 
the free energies of the pure model A and the random model B do not intersect 
anymore. These observations can be expressed in an analytic form for ( Tw - TD)/ Tw << 
1 when (9) is valid. For larger deviation from Tw we have calculated the free energy 
of the full system (U # 0) numerically. The phase diagram is depicted in figure 2 for 

The pure system with attractive U and all vi  = uA corresponds to p = 1. The interface 
is pinned to the defect line already at T=O, and depins from it only at T = m .  This 
is the consequence of our choice uA> U. The same behaviour occurs for pd < p  < 1, 
where Pd is defined by 

J = 1 , ~ = 0 . 3 , U A = 1  and U R = - ~ .  

0 = p d u A  + (1 -pd)UR = 0. (10) 
Below this concentration the defect line is repulsive on the average and there is a 

continuous wetting transition at finite TD. This is the only transition in the interval 
p1 < p < Pd. Here p1 is the value of p at which the zero-point energy of the state bound 
to the wall (-U) equals the zero-point energy of the state pinned near the defect line. 
Actually, at T = 0 the latter energy is determined by an interface, which is partially at 
hi = L (in order to benefit from the attractive regions) and partially at one of the 
degenerate positions hi = L* 1 (in order to avoid repulsive regions of the defect line). 
Thus, the problem at T = 0 is equivalent to a random field Ising chain at T = 0 (Forgacs 
et a1 1988a), and the zero-point energy follows from the calculation of Derrida et a1 
(1978). For p in the region p c  < p < p ,  , there is a sharp first-order depinning transition 
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at finite TF, where the interface jumps from the wall to the defect line. This transition 
is followed by a continuous wetting transition, where the interface unbinds from the 
defect line. pc  follows from the equality TF = T,, where Tw is the wetting temperature 
of the system without defect line at L (model A), and is given by (6). With the values 
of J and U, used in the numerical calculation, (6) leads to Tw/( 1 + Tw) = 0.53 in figure 
2. The equality TF= Tw (TF determined by (4) with w replaced by E)) then gives 
pc=0.4.  Finally, for O < p < p c ,  the interface does not bind to the defect line at all, 
essentially because it is too repulsive. 

Throughout this work we have carefully avoided calling the first-order transition 
a wetting transition. In fact in Cahn’s terminology it is not a wetting transition (Cahn 
1977); Antonov’s rule for the contact angle does not hold (Forgacs et al 1988~) .  

In conclusion, we have shown that the effect of a disordered defect line in the bulk 
of a ZD RSOS model is to completely change the character of the unbinding transition. 
Such a line, depending on the strength of the disorder, may lead to a first-order 
depinning transition or may turn the first-order transition already existing in the pure 
system to second order in agreement with the result of Imry and Wortis (1979). 
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